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Abstract

This paper describes the development of a theoretical model for the strength of mechanical relaxation in terms of micromechanics of

deformation. Polymethyl methacrylate (PMMA) is used as the model amorphous polymer. The internal molecular rearrangements during

relaxation are identified and accounted for by the rotation of specific atomic groups. Voronoi tessellation is used as a method to characterise

the nanostructure in amorphous glassy polymer below Tg: A theoretical model is postulated and shown to provide a limited quantitative

prediction capacity of the anelastic deformation and the corresponding stress relaxation based on measurable molecular parameters without

adjustable factors. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Anelastic behaviour has been the subject of research and

experimentation for many years, and the field is well

covered with phenomenological and molecular theories

[1–6]. The essential elements of the theories include the

definition of the relaxation strength, DE=E; and the

associated time constant, tR: The understanding of physical

and chemical parameters for the latter quantity has attracted

most attention through molecular dynamics, atomic bonding

and spectroscopy. By contrast, practically no theory exists

with predictive powers for the strength of mechanical

relaxations in polymers. This view has been expressed

strongly in review papers [7,8]. Indeed, there is far more

success in predicting the strength of dielectric relaxations in

polymers [2,9,10], and in metals, for which many theories

have been developed in the past [11–13].

A possibility for new developments based on concepts of

conformational structures arose with the improvements in

the ability to simulate accurately amorphous polymeric

structure [14–16]. In a simulated amorphous cell the

nanovolume elements around each side-group or segment

can be calculated by Voronoi tessellation and compared to

the volume needed for a specific group to move between

local minima, and therefore, to relax in a time span

comparable to tR: This enables one to establish a link

between mechanical properties such as the relaxation

strength and the nanoscopic structure of amorphous

polymers.

The model presented in this paper focuses on quantitative

prediction of the magnitude of mechanical relaxation in

terms of precisely defined molecular parameters. It is based

on rotation of a side-group around an offset bond, resulting

in a phenomenon of mass transport and volumetric

distortion. Atoms rotate/jump from one position to another

within the confined space around the bonded group. This is

coupled with a movement of a void space (free volume) in

the opposite direction. The net result is a change of shape of

the monomer (volume distortion). Although rotation of a

side-group leads to a finite translation but no diffusion,

multiple rotations of the same side-group are postulated to

account for the observed magnitude of relaxation strength. It

is in some way analogous to the directional mass flow by

diffusion of atoms and vacancies under stress, e.g. the

Herring–Nabarro creep in metals [17], or the reversible

jumping of small impurity atoms in bcc metals from

tetrahedral to octahedral sites, and the associated mechan-

ical relaxation [11,13,18,19].

In this work PMMA is chosen as the model polymer

because it has been studied thoroughly in the past, and

therefore, it is well characterised. Its molecular chain
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architecture allows seven elementary molecular motions of

both rotational and translational character as shown in Fig.

1. The molecular motions which give rise to mechanical

relaxations in polymers (below the glass transition tem-

perature) have been summarised by Heijboer, and assigned

the letters from A to D [4]. In relation to the Heijboer

categories, type D is absent (no additives), and type A is

further subdivided into three elementary types, AR, ATT

and AAT, as listed in Table 1. We concentrate on the first

four elementary motions. Each motion contributes to stress

relaxation in a polymer sample under load, from small

amounts (motions 3 and 4) to significant amounts (motions 1

and 2). A very important effect arises from large variations

of individual monomer volumes defined by Voronoi

tessellation. It will be shown that these variations of

microstructural parameters on nanoscale dimensions can

lead to a broad distribution of relaxation times. Quantum

effects are neglected so that all atoms have well-defined

positions.

2. Theoretical model

2.1. Micromechanics of deformation: the RT event

Consider a polymer in which each monomer contains a

side-group of atoms that can rotate around a bond that is not

in the backbone of the chain (Fig. 2). Assume the

arrangement of atoms to be such that rotation around the

bond (by an angle, a – 2p) results in a net displacement of

a set of atom(s) from the initial site (1) to another site (2)

with an associated voiding of site (1). The net set excludes

atoms in the side-group, which possess mirror symmetry in

plane containing the axis of rotation. This rotation–

translation process will be referred to as an RT event, and

the net set of atoms as the NA set. The RT event is the basic

element of anelastic relaxation. In this paper, it is assumed

that there is no electric or magnetic dipole associated with

the monomer. The effects due to the presence of dipoles will

be treated in our subsequent publications. To facilitate the

description of the model, we represent the monomer in a

schematic way as a prism, shown in Fig. 2(b). The monomer

is characterised by length, l0; and Voronoi diameter, F;

given by:

F ¼

ffiffiffiffiffiffiffiffi
Vmon

l0

s
ð1Þ

The total volume of the monomer (including all its parts) is

defined by Voronoi tessellation [20–22], and this volume is

denoted by Vmon: The Voronoi volume of the side-group

attached to the monomer is denoted as Vsg; and the Voronoi

volume of the NA set as VNAS: The latter is a subset/segment

of the total monomer volume, such that VNAS , Vsg ,

Vmon: The NA set is characterised by the dimensions a and

lNAS; such that a £ lNAS £ l0 ¼ VNAS: An RT event has the

effect of distorting the shape of the monomer. It is

postulated that this deformation is described to a good

Fig. 1. The seven elementary segmental motions in the molecular chain of PMMA. Motions 1–4 involve atomic groups attached to the chain back-bone.

Motion 5 refers to a twisting of a segment of the main chain. Motion 6 involves relative transverse movement between two or more neighbouring chains.

Motion 7 involves longitudinal chain movement relative to its neighbours.

Table 1

Elementary molecular motions in pure PMMA leading to stress relaxation

Molecular groups in PMMA Motion type Heijboer designation [4]

1 C–COO–CH3 side-group Side-group rotation about the bond linking it to the main chain B

2 CO–CH3 on the side-group Rotation of a portion of the side-group C

3 CH3 on the side-group Rotation of a portion of the side-group C

4 CH3 on the main chain Side-group rotation about the bond linking it to the main chain B

5 Main chain segment Twist rotation motion of the main chain ATR

6 Main chain segment Transverse translation of the main chain segment ATT

7 Main chain segment Axial translation of the main chain segment AAT
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approximation by the following relationship

geff ¼
l0lNASa

l0F
2

d

F
¼

VNAS

Vmon

d

F
ð2Þ

where geff is effective shear strain of the monomer volume

expressed in the local frame of reference, ½xyz�; and d ¼ ldl
is the magnitude of the displacement vector of the NA-set.

The deformation is not homogeneous; it involves a portion

of the volume of the monomer, namely VNAS; being moved

from one position (site 1) to another position (site 2) without

moving the rest of the monomer. The equation is expressed

in terms of desired parameters that characterise the

molecular elements obtainable from molecular simulations

and by Voronoi tessellation method, as described later.

Eq. (2) provides the basis for a convenient relationship to

predict the (internal) anelastic strain, expressed in readily

measured molecular terms, and overcomes the rather

simplistic dimensional features of the monomer as rep-

resented in Fig. 2.

Next, we chose another frame of reference, ½123�;

oriented with respect to the ½xyz� frame of reference in

such a way that the angle between z-axis and 3-axis is Q:

Using strain transformation rules we calculate the normal

strain component, resolved along the 3-axis, as:

D103 ¼ 1
2
geffsin 2Q ð3Þ

The factor 1/2 appears as a result of shear to normal strain

transformation [23]. The symbol, D, signifies the fact that

the strain is an ‘internal’ strain, representing the rearrange-

ment of atoms within the volume of the polymer, and ð0Þ

indicates that the strain increment comes from one RT event

only. The RT event is an elaboration of a well-established

concept for mechanical relaxation via a two-site jump

process [5].

The physical manifestation of the RT molecular process

will occur as a consequence of disturbance of mechanical

equilibrium. In the case of stress relaxation, the phenom-

enon will be activated by the applied strain, 1appl; and the

uniaxial magnitude of the effect, within the bounds of linear

viscoelastic behaviour, will be given by:

D1ðtÞ ¼
XN
i¼1

ðD103ÞiCN1appl ¼ lðtÞ1appl ð4Þ

A polymer sample of volume V contains N number of

monomers. In the case considered here, the concentration,

CN ; expressed as the number of RT groups per monomer, is

equal to one. The quantity, D1ðtÞ; and its relative measure,

lðtÞ; describe the internal molecular re-arrangement occur-

ring in the polymer at 1appl ¼ const – 0: The subscript (3) is

omitted for the uniaxial case, and time dependence derives

from the stochastic and kinetic nature of the RT events. The

summation in Eq. (4) is carried over all the monomers in the

whole volume of the polymer sample. The relevant

parameters for the RT event will vary from monomer to

monomer, and the summation must be carried out in full. In

practical terms, however, we calculate appropriate average

quantities for each of the molecular parameters:

lðtÞ ¼
1

2

�d
�F

�VNAS

�Vmon

X
ðsin 2QÞi ð5Þ

For very large N we may approximate the summation by

Gauss’ theorem:

X
ðsin 2QÞi ¼

ð2p

0

ðp=2

0
sinð2QÞdQ df ð6Þ

We note that:

if all monomers are oriented exactly in the same way

ðQ ¼ 458; f ¼ 08Þ; all side-groups are in the same initial

Fig. 2. Rotation of the COOCH3 side-group on the PMMA monomer: (i) on the left a molecular model (to scale), with the main chain axis coming out of the

page; (ii) in the centre a schematic representation of the monomer and its changing shape due to side-group rotation/translation; (iii) on the right, a set of local

reference axes (chain axis is along the x-direction).
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positions, and all groups do RT event to the new site by

1808 rotation, then

lðmaxÞ ¼
1

2

�d
�F

�VNAS

�Vmon

ð7Þ

which defines the upper bound on the magnitude of the

molecular strain parameter caused by one type of side-

group rotation in an ideal volume of polymer, if the

orientation of the monomers is randomly distributed in

space, but in such a way that 08 # Q # p=2; and 08 #

f # 2p; then the strain parameter will amount to

lðrandomÞ ¼
1

p

�d
�F

�VNAS

�Vmon

ð8Þ

if the orientation of the monomers is random in space,

08 # Q # p=2; and 08 # f # 2p; and all groups do RT

event, and the applied strain is zero, then

lðminÞ ¼ 0 ð9Þ

The last case represents the situation in a real sample in a

state of mechanical and thermal equilibrium in which

rotations of side-groups are thermally activated and occur

spontaneously and incessantly without causing any macro-

scopic deformation or position fluctuation of the polymer

volume.

2.2. Continuum mechanics of relaxation

Consider now a polymer sample in the shape of a prism

of length, L; and cross-section, A; forced to extend step-wise

by DL at time t ¼ 0: If the polymer behaviour is purely

elastic, then the applied force, P; is linearly related to the

extension through the tensile modulus of elasticity and the

dimensions of the specimen:

P ¼ E
A

L

� �
DL ð10Þ

However, if relaxation events are allowed to occur, then at a

given extension, DL; the force will be diminished with time,

t; by some value, DPðtÞ; due to internal stress relaxation by

molecular reorganisation, so that the relationship can now

be written as:

½P 2 DPðtÞ� ¼ ErelaxðtÞ
A

L

� �
DL ð11Þ

Thus the effective stiffness of the sample, ½P 2 DPðtÞ�=

DL; decreases with time due to the action of the anelastic

events. ErelaxðtÞ represents the diminished value of the

corresponding tensile modulus at time t: We assume that

every RT event causes/allows local stress relaxation on a

microscopic scale in the vicinity of the rotated side-

group. The sum of all events manifests itself as

relaxation at the macro level, so that we may write for

the relaxation modulus

ErelaxðtÞ ¼ EU 1 2
DEðtÞ

EU

� �
ð12Þ

where EU ¼ PL=ADL is the unrelaxed value of the stress

relaxation modulus, DEðtÞ ¼ DPðtÞL=ADL; EðtÞ ¼ ER for

t !1 and ER is the relaxed value of the stress relaxation

modulus. The link between micromechanics of Eq. (8) and

continuum mechanics of Eq. (12) is expressed as follows:

DEðtÞ ¼ lðtÞEU ð13Þ

Strict conditions apply to the quantity lðtÞ: It must be equal

to zero when temperature is absolute zero ðT ¼ 0 KÞ; and its

maximum value cannot exceed that of the applied strain,

1appl ¼ DL=L: Thus,

0 # lðtÞ # 1appl; for all 0 # t # 1 ð14Þ

It follows that DE ; 0; if 1appl ¼ 0; and/or if T ¼ 0 K: Also,

for complete stress relaxation, DE ¼ EU; the polymer

behaves as a viscoelastic liquid. By definition [24,25], in a

viscoelastic solid, for t !1; DEðtÞ! ER , EU: With the

above conditions and restrictions, and if only one RT event

is allowed to occur per side-group, then the maximum value

of the relaxation strength due to that particular RT

mechanism is given by:

DE

EU

� �
max

¼
1

p

�d
�F

�VNAS

�Vmon

ð15Þ

The presumption that RT events will result in stress

relaxation must now be proven. Thus, it is necessary to

establish that RT events will occur when activated by the

action of the external deformation of the polymer sample.

We consider a mechanism, which puts bias on the RT events

during externally applied deformation to give non-zero

anelastic flow and stress relaxation.

2.3. Physical criteria for RT events

A physically sound criterion for specifying the necessary

condition for an RT event to occur can be constructed on the

basis of an assumption that the monomer shear occurs if and

when the associated ‘internal’ strain contributes in a positive

sense to the macroscopic stress relaxation suffered by the

sample. In mathematical terms, this necessary condition can

be expressed in terms of projection of the displacement

vector, d; onto the elongation vector, DL: Let DL be a unit

vector aligned in the positive direction of the 3-axis. Then

we require that the projection of d on DL must have the

same direction as DL:

ProjDLd ¼
d·DL

lDLl

� �
£

DL

lDLl

� �
. 0 ð16Þ

Since DL is positive by definition, Eq. (16) is always

satisfied when:

d·DL . 0 ð17Þ
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This criterion provides the necessary condition for the RT

process to occur under the influence of the external loading.

We note at once that this condition will be satisfied for only

a (1/2) fraction of all the monomers in the initial stage of

deformation (by virtue of the random spatial distribution,

the other half will be in sites not favoured for the transition,

i.e. d·DL , 0). This is equivalent to restricting the limits of

integration in Eq. (6) over the angle Q from 245 to þ458.

The above criterion is consistent with the second law of

thermodynamics. The work of deformation of the sample

becomes the Helmholz free energy, and the relaxation of the

stress ensures that Clausius–Duhem inequality is satisfied

[25]. If the stress tensor is split into two parts according to

the scheme

sij ¼ s
ðCÞ
ij þ s

ðDÞ
ij ð18Þ

where the first part is a conservative stress tensor, and the

second part is a dissipative stress tensor, then

du

dt
¼

1

r
s
ðCÞ
ij _1ij þ

1

r
s
ðDÞ
ij _1ij þ

dq

dt
ð19Þ

where u is the specific internal energy (which includes the

Helmholtz free energy), the second term on the right-hand

side is the rate of energy dissipated per unit mass by the

stress, and the last term is the rate of heat flux per unit mass

into the continuum.

2.4. Molecular dynamics of the RT event

The rotation of a group of atoms on a polymeric chain (or

a monomer) is treated here by the rotational isomeric state

theory [26,27]. The occupation of site (1) is denoted by

N1ðtÞ; and for site (2) by N2ðtÞ: In the closed system we must

have:

N ¼ N1ðtÞ þ N2ðtÞ ð20Þ

If kNil is used to denote time-average, then the transitional

state theory gives the rate of reaction as follows

dkN1lðtÞ
dt

¼ 2kð1Þ!ð2ÞkN1lðtÞ þ kð2Þ!ð1ÞkN2lðtÞ ð21Þ

where kð1Þ! ð2Þ and kð2Þ! ð1Þ are the rate constants. The

solution of this equation involves and requires, in

accordance with standard treatment of thermally activated

molecular processes [13], that an RT event be governed by

the jump rate

n ¼ n0 expð2UðwÞ=kBTÞ ð22Þ

where v gives the frequency of the RT event in a chosen

monomer, and v0; kB and T have the usual meaning. The free

energy function, UðwÞ; includes the intramolecular poten-

tial, VðwÞ; plus the Helmholz free energy, AðwÞ; which

represent the periodically varying potential field in a Born–

Oppenheimer (BO) approximation. The usual quasiharmo-

nic approximation [28] allows UðwÞ and phonon frequen-

cies, v; to depend on volume but not explicitly on

temperature. On the basis of the above assumptions, we

obtain the relaxation time constant of the RT process as:

tR ¼ t0 expðEbarrier=kBTÞ ð23Þ

We assume the activation energy barrier to have two

components [29]:

Ebarrier ¼ Q1 þ Q2ðVvÞ ð24Þ

Q1 is the fundamental component due to rotational stearic

hindrance alone imposed by the atoms adjacent to the

monomer. Q2 is due to hindrance to rotation arising from

the presence of other surrounding atoms/monomers within

the polymer, and Vv is a generic symbol for Voronoi volumes

of any atom or atomic group. Therefore, the Q1 component is

essentially constant and equal to the activation barrier

obtained by theoretical calculations for a chain in free

space, by computer simulations, or by appropriate exper-

imental measurements (for example, in polymer solution).

On the other hand, the Q2 component is dependent on the

volume available to the monomer (or more precisely, on the

Voronoi volume associated with the side-group). Here we

choose to measure this volume by Voronoi tessellation [20].

This volume is dependent on several factors such as the

polymer thermal history, its present density, presence of void

space for the side-group to rotate to, as well as volume

dilatation (hydrostatic tension or compression) imposed by

the macroscopic extension of the sample. As a first

approximation, we represent all of the above factors by a

single dependence of Q2 on Voronoi volume of the relevant

side-group, as described by the equations below

Ebarrier ¼ Q1 þ
q2

x
ð25Þ

where x; represents a nanostructural parameter, defined by:

x ¼
Vmon 2 V0

V0

ð26Þ

In Eqs. (25) and (26) Q1; q2 and V0 are specific constants

determined from molecular structural parameters by methods

discussed later. V0 is the volume, Vmon; reduced by thermal

contraction to temperature, T ¼ 0 K: The values of the

parameter x (which describes the variation of the monomer

Voronoi volume) can be obtained on the basis of experimen-

tal and/or computer simulation studies.

2.5. Structural dependence of the relaxation strength

In a volume of polymer in which there is a significant,

but not a very large number of monomers, the Voronoi

volumes associated with each side-group of interest can be

best represented by a discrete distribution function, pðVvÞ;

with a suitable choice of volume intervals. The distribution

contains structural information about that particular

volume of polymer. In an amorphous polymer the random

packing will result in a finite width of the distribution, such

that V0 # VvðminÞ # VvðmaxÞ ! 1: The width of the

Z.H. Stachurski / Polymer 43 (2002) 7409–7417 7413



distribution will also reflect the condition of the polymer,

for example, it will be different for quenched or annealed

state. This information can be coded into the relaxation

strength by transformation of the distribution into a

relaxation spectrum as follows:

piðVvÞ! piðxÞ! piðtRÞ ð27Þ

Eq. (26) is used for the first transformation, and Eq. (23) is

used for the second transformation. In the above process, p

represents the number fraction of monomers, normalised in

such a way that:X
piðVvÞ ¼

X
piðxÞ ¼

X
piðtRÞ ¼ 1 ð28Þ

In these terms, the time and temperature dependent (and

now structure dependent) relaxation strength is given by:

DE

EU

� �
ðt;T ;xÞ

¼
DE

EU

� �
max

XN
i¼1

piðtRÞ 1 2 exp 2
t

ðtRÞi

� �� �
ð29Þ

Updating Eq. (12) with Eq. (29) gives the final relationship

for the stress relaxation modulus, showing direct depen-

dence on time and temperature, and the structure of the

polymer through the distribution of monomer Voronoi

volumes:

Erelaxðt;T ; xÞ ¼ EU 1 2
DE

EU

� �
ðt;T ;xÞ

$ %
ð30Þ

As expected, the above relationship is consistent with

standard theories of viscoelasticity [1,24,30,31]. If the

relaxation spectrum can be described by a continuous

analytical function, then the relaxation modulus can be

represented by the hereditary integral:

Erelaxðt;T ; xÞ ¼ ER þ
ðþ1

21
HðtRÞexp 2

t

ðtRÞ

� �
d lnðtÞ ð31Þ

The point is stressed again that the relaxation strength and

relaxation times are functions of the nanostructure of the

amorphous polymer through the parameter, x:

2.6. Density dependence of the unrelaxed modulus

There is an indirect dependence of the modulus of

elasticity on temperature, which has nothing to do with

relaxation processes. It is simply an effect due to variation of

density by thermal expansion increasing intermolecular

distances, thus diminishing the value of the modulus with

temperature [32]. Theoretical prediction of this variation for

fcc metals is [33]

EðTÞ ¼ E0

rðTÞ

r0

ð32Þ

where r0 is the density of the polymer at some reference

temperature (say 0 K), and r0ðTÞ is the density at

temperature T : This has been derived on the basis that the

interatomic separation must increase with temperature in

proportion to the linear coefficient of thermal expansion. No

such detailed theoretical derivations have been made for

amorphous polymers, although it has been reasoned that in

polymers density variation with temperature must be

accounted for by interchain separation only [34]. Never-

theless, phenomenologically, the variation of density in

terms of the macroscopic linear coefficient of thermal

expansion, a; must follow a similar relationship as above.

Therefore, we assume that to a good approximation the

temperature dependence of the unrelaxed modulus of an

amorphous polymer is given by:

EðTÞ ¼
EUð0Þ

ð1 þ aDTÞ3
ð33Þ

EUð0Þ is the value of the modulus at 0 K, and DT is the

change in temperature. The former quantity is not easily

accessible by experiment. At best, we make measurements

at various temperatures and extrapolate. For PMMA there is

also a theoretical prediction for this value, amounting

approximately to 3 GPa [35]. This quantity can be also

obtained from computer simulations [36].

3. Discussion

3.1. Relaxation strength

Eq. (15) predicts relaxation strength of finite magnitude.

This is consistent with the fact that rotation of side-groups

can only result in partial (and finite) relaxation of applied

stress. A significant feature of this model is that it predicts

the strength of mechanical relaxations a priori. The

magnitude of the internal shear strain can be calculated

with a reasonable degree of confidence in terms of mean

values of the characteristic molecular parameters. The only

requirement is the detailed knowledge of molecular

chemistry and the associated physical nanostructure,

which can be described and quantified by the Voronoi

method. If this is known, then relatively simple calculations

yield the maximum value of stress relaxation due to

rotations of the accounted side-groups. To predict the time

to reach that relaxation level is a separate matter, and

requires the activation energies of the individual molecular

motions.

The effect of concentration of side-groups in the polymer

has not been considered in any detail. However, it is clear

that we are dealing here with high volume fractions (not a

dilute case). One may comment to say that cooperative

effects will affect the relaxation times of the RT processes,

but should not alter the relaxation strength.

It is appropriate to recall the theory of Nowick and Heller

[18], and to compare it with the model presented here. The

N–H theory is for anelastic relaxations due to defect

rotations in crystalline solids. It is of general validity for all

materials, and should in principle apply to amorphous

glassy polymers, as well. It assumes homogeneous external

fields and low defect concentrations so that defect transition

Z.H. Stachurski / Polymer 43 (2002) 7409–74177414



has negligible effect on free energy of the crystal. Defects

that are present in different but equivalent orientations will

produce anelastic strain, 1an
ij ; given by

1an
ij ¼

X
p

l
p
ijCp ð34Þ

where Cp ¼ Npvp is the concentration of defects in terms of

mole fraction, and l
p
ij is a second order symmetric tensor

described by an ellipsoid dipole. The analogy of this

equation with the mechanics presented in Section 2.1 is

direct. Quantitative adaptation of the N–H theory to

amorphous polymers, however, is not straightforward as

symmetry operation cannot be identified in amorphous

materials by the usual point group methodology [37]. Rather

than considering the symmetry operations literally, we

recognise that the more general criterion (given above in Eq.

(16), combined with the statistical nature of the RT event,

ensures that anelastic processes take place.

In deformation of solids with non-directional atomic

bonding (for example, metals), the rotational component is

neglected, as it has no effect on the behaviour of the

material. Rotations of atoms around bonds do not alter the

symmetry elements of the crystal, and therefore, are of no

consequence to atomic transitions. By contrast, in solids

with directional bonding involving two or more atoms

(ionic, covalent) rotations can no longer be neglected. This

was well recognised in the mechanics of polymer defor-

mations [38], and also in the development of this model.

3.2. Relaxation times and spectra

Previously published molecular theories, which predict

distribution of relaxation times for polymers, fall broadly

into two categories: (i) theories based on the Rouse bead-

and-spring representation of a real polymer molecule

(segmental motion type 6, Fig. 1), and (ii) the de Gene

reptation theory (elementary motion type 7, Fig. 1). They

treat the main relaxation modes of polymer chains, to which

the RT model is a complementary mechanism. The side-

group rotation RT theory is, therefore, in a separate

category.

There is a substantial variation of Voronoi volumes of the

monomers and side-groups along each molecular chain,

indicating significant density fluctuations on nanoscopic

scale. This variation was found in many simulated

polymers, it has theoretical foundations [34,39], and

supporting experimental evidence [40], and it may be

considered to be representative of the true state of

nanodensity variations in real amorphous polymers.

In the theory presented here, the distribution of relaxation

times is derived from the discrete distribution function,

pðVvÞ; which in turn is obtained from the measurements of

Voronoi polyhedra for all relevant atoms. The essence of

that transformation is contained in the relationship

expressed in Eqs. (24)–(26). Whereas Eq. (24) has sound

physical basis, Eq. (26) is purely empirical at this stage, and

should be considered as the least established element of the

RT model, as we have no theoretical justification for its

form. Nevertheless, it displays the correct functional form.

Note that Ebarrier !1 as Vmon ! V0: By definition, V0 is the

Voronoi volume of a side-group, which is so small that

molecular transition is prevented, except at T !1: It is

proposed that V0 is derived empirically by extrapolating to

absolute zero temperature. On the other hand, Ebarrier ! Q1

when Vmon increases (for example, by thermal expansion)

towards Vl which is the Voronoi monomer volume

corresponding to the polymer well above its glass transition

temperature (liquid state). Similarly, q2 must be obtained

from experimental data involving solution studies. Both

quantities as yet lack precise definition, and therefore, are

adjustable to some extent, until a satisfactory theoretical

treatment is carried out. The distribution of relaxation times

for every RT mechanism is broad, ranging from a minimum

value, tRðminÞ ¼ t0 expðQ1=kBTÞ; to infinity when, x ¼ 0:

This feature, together with the finite value of the relaxation

strength, categorises the RT model as that of a viscoelastic

solid.

The relaxation time of a rotating methyl group in PMMA

has been modelled by Nicholson and Davies [41], and

measured experimentally by Arrighi et al. [42]. They

observed that the distribution of barrier energies is the

main origin for the distribution in jumping rates, hence

relaxation times. The distribution is asymmetric and broad-

ens with increasing hydrostatic pressure. We concur with

their main conclusion that the primary effect of the presence

of other molecules in the condensed system is to broaden the

range of conformational barriers to rotation. We propose to

extend this conclusion to the rotation of other atomic sets.

Indeed, the distribution of rotational barriers of the ester set

has been modelled and measured by Lousteau [43] and

found to be asymmetric, and described to a good

approximation by a G-function.

3.3. Structure dependence

The results of simulations carried out by the authors

using MSI software [44] (to be presented in a subsequent

publication) show that the distribution of monomer Voronoi

volumes can be described to a good approximation by a

generalised Poisson distribution (GPD). Previous calcu-

lations carried out on amorphous polymers also give results

consistent with the above proposition [45–47]. Similar

results for inorganic glasses were published by Tsumuraya

et al. [48].

Theory of crystallography defines ideal crystal struc-

ture(s) based on the atomic motif and translational

symmetry as its fundamental operational elements, sub-

sequently from which space lattice(s) and unit cell(s) are

derived. The structures of real materials depart in many

ways from the ideal, hence the theories of crystal defects,

disorder, and representative volume element. It is frequently

tacitly assumed that amorphous materials are found at the
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limits of disorder. In fact, and especially so for polymers,

amorphicity is usually defined by what it is not (i.e. no

crystalline peaks in XRS, no bond correlation in nuclear

magnetic resonance (NMR)), rather than by what it is. The

lack of a specific definition inhibits complete understanding

of amorphous materials. A theoretical development of ideal

amorphous structures is required to provide firm foundation

for the correlation of molecular structure with properties and

behaviour, especially where there is need to describe

relative motions and non-conservative transitions of atoms

or atomic groups [19]. The geometric system based on

Voronoi space tessellation possesses these properties, and

has the potential to represent the static structure well, in the

same way as crystallography describes the static structure of

crystalline solids.

External actions, such as temperature, quenching and

annealing, pressure, and mechanical deformation will alter

the structure of the polymer, and therefore, affect the

distribution of Voronoi volumes. For example, the distri-

bution of Voronoi volumes for (i) a quenched, and (ii) an

annealed polymer will differ in a measurable way. Although

there is no direct experimental method to measure the

Voronoi volumes in a polymer, the distribution can be

derived from X-ray scattering. If FV is the distribution, then

for an isotropic sample the scattered intensity will be given

by the standard formula:

IðsÞ ¼
Nf 2

V
1 þ

1

V

ð1

0
ðFVðrÞ2 1Þ4pr2 sinð2prsÞ

2prs
dr

� �
ð35Þ

The relationship between the distribution of Voronoi

volumes and the radial distribution function was established

for simple monoatomic structures by Finney [49]. An

elaboration of the structure and properties of amorphous

polymers will be published later.

4. Conclusions

The character of molecular motions responsible for

mechanical relaxations in polymers below the glass

transition temperature has been elaborated on. In particular,

the theoretical treatment of relaxation associated with side-

group motion provides a clear model for relating the

phenomenon to molecular quantities.

The inadequacy of available theories and mathematical

models, expressed in the published literature, has been

diminished, and the field has been ameliorated with a self-

consistent theory, which is firmly based on molecular

structure of the amorphous polymer.

The RT model can be applied in general to all polymers

with side-groups, which can rotate or transform from one to

another site and configuration.

The description of molecular motions responsible for

mechanical relaxations has been elaborated on beyond the

original Heijboer classification to reveal their contribution

to the strength of mechanical relaxation.
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